If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-8k+3=0
a = 1; b = -8; c = +3;
Δ = b2-4ac
Δ = -82-4·1·3
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{13}}{2*1}=\frac{8-2\sqrt{13}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{13}}{2*1}=\frac{8+2\sqrt{13}}{2} $
| 6–8(2x–4)=–58 | | 2x3−1=7 | | −4(h−2)−3h=−4h−(−14)-4(h-2)-3h=-4h-(-14) | | 8(x-10=4 | | 3(2p+4)=8p+12-2p | | 2.7+u=3.5 | | 6y(y+11)=5y | | 3k^2-17=0 | | 5x+8=3(x-4)+6 | | 6m•4=24 | | 6-8(2x-4)=-58 | | 5(2x-1)=-x+28 | | 9x.3+.4=3.5 | | 3p–4=8. | | P=120-3q | | 4(x-3)=5x-9 | | 4x-23=4(5x+5)+5 | | 5.1a=12 | | 6x+22=4x+26 | | (X+2)2+(2x-1)2=5x(x+1) | | 4b-23=22 | | 4(47-x)+2x=124 | | 5x/11=7 | | 3(4x+3)2=48 | | 20-5x=6-2x | | –2t−4=2−2t | | 1x²+20x-11=-1 | | 6z+3-4z=9) | | 40-x=x+14 | | 3(4x+3)^2=48 | | x²+20x-11=-1 | | 50+4x=90-4x |